HISTOLOGY, HISTOCHEMISTRY, AND ULTRASTRUCTURE OF STEROIDOGENESIS DURING TESTICULAR CYCLE OF MUGIL CEPHALUS IN THE NATURAL HABITAT

Ferial A. El-messady¹; Noha A. Khalil²; Mostafa A. Mousa³*

¹Zoology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
²Fish Reproduction Laboratory, National Institute of Oceanography and Fisheries (NIOF), Qalyubia, Egypt
³Fish Reproduction Laboratory, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt

ABSTRACT

Recently, an increasing attention has been paid to the productivity and propagation of grey mullet “Mugil cephalus”. In view of the fact that the steroidogenic hormones play a key role in fish maturation and production of fertile ova, the present work was planned to determine and investigate the steroidogenic cells in the testes of grey mullet, and thence to determine their levels of activities during its maturing cycle, aiming at making use of the obtained data in fish breeding and culture. Mature males of M. cephalus were obtained from the natural habitat (Al Bardawil Lagoon). Cytochemical and ultrastructural investigations were performed for the steroidogenic cells containing 3β-hydroxysteroid dehydrogenase. Five developmental stages were quite distinguishable in M. cephalus males during the testicular cycle: immature stage, stimulating spermatogenesis, rapid spermatogenesis, mature or ripe, and spent stages. The electron microscopy showed that the interstitial (Leydig), lobular bounding, and Sertoli cells inspected during rapid spermatogenesis displayed prominent lipid droplets and cytoplasmic organoids typical of protein-synthesizing cells (i.e. rough endoplasmic reticulum, abundant ribosomes, and distinct Golgi apparatus). In addition, Sertoli cells, in particular, possessed certain microtubules that are known to serve in transporting metabolites. Furthermore, the testes examined after spawning (spent ones) by electron microscope have designated that Sertoli cells, as well as some Leydig cells, had been changed into phagocytic ones to get ride from the non-ejaculated sperm cells. In conclusion, the present results could be very valuable in the problems concerning fish maturation in captivity.

INTRODUCTION

Accurate knowledge of the gonads cycle and their functional mechanism in fishes is essential for good management in both natural fisheries and fish farming; the morphology, histology, ultrastructure, and
cyclical changes in the fish testes have been studied in many teleosts[1-6]. Also, the histology and histochemistry of the testes and ovaries in a large number of teleosts have been investigated by many researchers who had proved that the gonads of those fish secrete steroid hormones[2,7,9]. Although the exact distribution of the tissues secreting steroid hormones is not known, there are at least five different cellular sources that have been suspected to be implicated in androgen production: the interstitial cells, lobule boundary cells, Sertoli cells, germ cells, and the epithelial cells of testicular efferent ducts[2,8,10,11].

The sex-steroid synthesizing cells are characterized by the presence of Δ 5-3β-hydroxysteroid dehydrogenase (3β-HSD) and glucose-6-phosphate dehydrogenase (G6PD)[12-16]. These key enzymes play main roles in the metabolic pathways during the synthesis and production of sex steroids[17]. Histochemically, 3β-HSD has been localized in the interstitial cells of the testis in many of teleost fishes; Xiphophorus maculatus[12], Ictalurus nebulosus[18], O. niloticus[19], Padogobius martensi[13], Serrasalmus spilopleura[20] and Carassius auratus[16]. Also, the histochemical studies have also revealed the presence of 3β-HSD activity in the Sertoli cells of Cymatogaster aggregata[21], Salmo gairdneri[22] and O. niloticus[19]. In addition, 3β-HSD activity was detected in interstitial cells and lobule boundary cells of Sarotherodon mossambicus[23], and O. niloticus[19]. Furthermore, the lobule boundary cells have 3β-HSD positive reaction and misnamed Sertoli cells in the testis of O. niloticus[24]. The histochemical observations were confirmed by the electron microscopy that the testicular 3β-HSD and G6PD-positive cells of teleosts had ultrastructural features typical of the steroid-producing cells; e.g. Padogobius martensi[25], Torpedo marmorata[26], Synbranchus marmoratus[27], Larimichthys polyactis[28], and Kareius bicoloratus[29]. However, not all available electron microscopic results supply consistent support for the histochemical findings.

In spite of the biochemical investigations have appeared that the gonads of M. cephalus produce sex steroid hormones[7,30], no available information concerning the real steroid-secreting sites in the gonads of this fish. Although, the wide concern of the mullet, few investigations were done on the location and fine structure of the steroid-secreting cells during its gonads maturation. Thus, the real location of steroid hormones secretion in the mullet gonad is still disputable. The present research was done to determine the steroids-producing cells by both the histochemical and the ultrastructural methods in the testes of M. cephalus.

MATERIAL AND METHODS

Fish collection and sampling

From Al Bardawil Lagoon, 100 adult males of M. cephalus (with standard length larger than 28 cm) were collected alive during the testicular cycle (from September until December, 2020). Before the dissection of fishes, they were anesthetized in clove oil at a dose of 40 mg/L of water[31]. After fish collection, the total and standard lengths of fish were measured to the nearest 0.1 cm. The gonads were extripated from the body cavity, weighed to the nearest 0.01 g and the gonadosomatic index (GSI) was calculated for each fish according to the following formula:

\[\text{GSI} = \frac{\text{Weight of the gonad/Gutted weight}}{100} \]

Based on the gonads morphology, histological appearance, and their gonadosomatic index (GSI), five sexual maturity stages were signified as adult males stage I, stage II, stage III, stage IV (Ripe), and stage V (spent or post-spawning)[32].

Enzyme histochemistry

Immediately after dissection of fishes, the gonads were cut into fragments, which were fixed in a mixture of 1% formaldehyde (freshly prepared from paraformaldehyde) and 0.25% glutaraldehyde in a 0.1 mol phosphate buffer at pH = 7.4[33]. Fixation
lasted for 20 minutes at 4°C under constant shaking, and the fixative was renewed after 10 minutes. Also, other fragments of gonads were fixed in 4% glutaraldehyde in 0.1 mol phosphate buffer (pH = 7.4).

The incubation media were freshly prepared just before use. To prepare 10 mL of the incubation medium of the 3β-hydroxysteroid dehydrogenase, 2 mg dehydroepiandrosterone were dissolved either in a mixture of N,N-dimethyl formamide (0.3 mL) and propylene glycol (0.3 mL) or in 0.6 mL of acetone (final concentration of substrates: 0.7 mmol), which considered as medium “A”. Approximately, 10 mg of nicotinamide adenine dinucleotide (NAD) and 10 mg of nitro-blue tetrazolium (NBT) were mixed in 9.4 mL of 0.1 mol phosphate buffer (at pH = 7.2) and considered as medium “B”. Phenazine methosulfate (PMS), an electron carrier, was added to the mixture of the media “A+B” just before the beginning of incubation. The final concentration of PMS varied from 0.1 mmol to 10 mmol. All of this operation had to be performed in the dark because of the high photosensitivity of PMS.

The fixed tissue fragments were incubated for a period varying from 30 minutes to one hour at 37°C in the darkness in a shaking water bath. After incubation, the tissue fragments were rinsed in the phosphate buffer, dehydrated through an ascending series of ethyl alcohol, cleared, infiltrated in 1.0% celloidin in methyl benzoate (two changes, 1-5 hours for each change), and placed in two changes of benzene (15-45 minutes for each change) before finally infiltrating and embedding in paraffin wax (paraplast; melting point: 56-58°C). Transverse sections of gonads were cut at the thickness of 2-4 μm. These sections were counterstained with eosin.

Electron microscopy technique

Immediately after dissection of the fish, the gonads were cut into several parts. Those assigned for the ultrastructural studies were fixed in 4% glutaraldehyde in 0.1 mol cacodylate buffer (pH = 7.2-7.4) at 4°C for 2-3 hours. Thereafter, washing in 5% sucrose in 0.05 mol cacodylate buffer (pH = 7.2-7.4) was performed three times each one 15 minutes. The specimens could be left in the fourth change overnight at 4°C. The post-fixation was performed in 1% osmium tetroxide in 0.2 mol cacodylate buffer (pH = 7.2-7.4) for 2 hours at 4°C. Thereafter, rinsing in 0.1 mol cacodylate buffer (pH = 7.2-7.4) was done three times and washing in distilled water at 4°C.

The tissues were dehydrated in an ascending series of ethanol and embedded in epoxy resin. The processes of dehydration, infiltration, and embedding were done as indicated in the Durcupan ACM set (D0166, Sigma-Aldrich Chemie GmbH, Taufkirchen, Munich, Germany).

For light microscopy, semi-thin sections were cut on a JUM-7 ultramicrotome (Jeol, Tokyo, Japan) with glass knives and stained with 1.0% toluidine blue in 1.0% sodium borate. The ultra-thin sections were cut on a JUM-7 ultramicrotome with a glass knife, and placed on 200-mesh copper grids. The sections were then stained with uranyl acetate (saturated in 70% ethyl alcohol) followed by lead citrate[34] and examined with a JEM = 10 CX transmission electron microscope (JEOL Ltd., Akishima, Tokyo, Japan) at 80 kV.

All used chemicals in the present study were of high purity and purchased from Sigma-Aldrich Chemie GmbH (Taufkirchen, Munich, Germany).

RESULTS

Histology of the putative steroids-secreting cells during testis maturation in M. cephalus

The putative (suspected) steroid-secreting cells in the testis of *M. cephalus* are presumably the interstitial cells, lobules boundary cells, as well as the Sertoli cells as illustrated in Figure “1”. With the seasonal changes in the testicular activity (i.e. testicular recrudescence) of male *M. cephalus*, the presumably steroid-producing
Steroidogenesis during testicular cycle of grey mullet

Figure 1: Semi-thin section of *M. cephalus* showing: (a) Immature testis, demonstrating the interstitial cells (ISC) with oval nuclei, lobule boundary cells (LBC) with elongated nuclei, and Sertoli cells (SC) with irregular nuclei. Besides, sperm mother cells (SMC), spermatogonia (SG), and interlobular connective tissue (CT) were present. (b) Stimulating spermatogenesis, designating the abundant interstitial cells (ISC) in the interlobular spaces, lobule boundary cells (LBC), and the Sertoli cells (SC) inside the lobules. Also, the spermatogonia (SG), primary spermatocytes (PSC), secondary spermatocytes (SSC), spermatids (ST), and spermatozoa (SZ) were illustrated. (c) Rapid spermatogenesis stage, marking abundant large interstitial cells (ISC) in the interlobular spaces, small-sized lobule boundary cells (LBC), and large Sertoli cells (SC). Also, the secondary spermatocytes (SSC), spermatids (ST), and spermatozoa (SZ) were demonstrated. (d) Ripe testis, displaying abundant interstitial cells (ISC) in the connective tissue of interlobular septum (ILS), lobule boundary cells (LBC), spermatids (ST) and spermatozoa (SZ). (e) Spent testis, perceiving the phagocytic Sertoli cells (SC) inside the lumens of seminiferous lobules (LU), beside the interstitial cells (ISC), remnants of germ cells, spermatozoa (SZ), and the thick interlobular connective tissue (CT).
cells have manifested certain quantitative and qualitative alterations. In the stage I (immature stage), the testis contained small sized lobules and a relatively large interlobular spaces filled with dense stroma consisting of connective tissue and blood capillaries (Figure 1a). The GSI was 0.35±0.15 (Table 1). The main components of the lobules comprised sperm mother cells and spermatogonia. The interstitial cells were occurring either singly or in small groups at both the periphery of the testis and in the interstices. These cells had comparatively large sizes with oval nuclei stained darkly with toluidine. The lobule boundary cells of the immature stage exhibited elongated shapes with also elongated nuclei. Sertoli cells commonly existed peripherally in the testis lobules being in close proximity to the germ cells (sperm mother cells and spermatogonia). They had comparatively large sizes and irregular shapes with prominent nuclei (Figure 1a).

In the stage II (stimulating spermatogenesis), the seminiferous lobules appeared relatively large in size (GSI of 0.8±0.25; Table 1) surrounded by lobule boundary cells and containing germ cells at various stages of maturation (i.e., spermatogonia, spermatocytes, spermatids, and spermatozoa; Figure 1b). Besides, Sertoli cells were seen in those lobules. Figure “1b” also showed the relatively small interlobular spaces occupied with connective tissue elements embodying interstitial cells. The interstitial cells exhibited a gradual increase in number. They had small-sized nuclei together with a sparse amount of cytoplasm. The lobule boundary cells being lesser in number and smaller in size and with smaller nuclei, than before, but the Sertoli cells had apparently increased in size and contained faintly stained nuclei. In addition, the testicular lobules contained spermatogonia, spermatocytes, spermatids, and spermatozoa (Figure 1b).

Table 1: Gonadosomatic index (GSI, %) of adult males *M. cephalus* at different stages of maturation during testicular cycle in natural habitat.

<table>
<thead>
<tr>
<th>Testis Stage</th>
<th>Gonadosomatic index GSI%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
</tr>
<tr>
<td>I. Immature stage</td>
<td>0.35±0.15</td>
</tr>
<tr>
<td>II. Stimulating spermatogenesis</td>
<td>0.80±0.25</td>
</tr>
<tr>
<td>III. Rapid spermatogenesis</td>
<td>3.10±0.38</td>
</tr>
<tr>
<td>IV. Mature (ripe) testis</td>
<td>10.55±0.65</td>
</tr>
<tr>
<td>V. Spent testis</td>
<td>1.25±0.35</td>
</tr>
</tbody>
</table>

Data were expressed as mean ± standard deviation (SD).

In the stage III (rapid spermatogenesis), the seminiferous lobules of the testis at this stage are revealing the predominance of spermatids and spermatozoa, but the number of spermatocytes was relatively low (Figure 1c). In this stage, the GSI was 3.1±0.38 (Table 1). The interstitial cells, during this period of development, have exhibited rapid multiplication with large sizes. The lobule-boundary cells were also apparently increased in both number and size. Besides, Sertoli cells of the testis were comparatively large in size in these stages, embodying relatively large-nuclei, and stained faintly with toluidine blue (Figure 1c).

In the stage IV (ripe testis), the seminiferous lobules appeared fully packed with mature spermatozoa. The GSI was 10.55±0.65 (Table 1). However, spermatids were still visible, though in small numbers (Figure 1d). The interstitial cells were
Steroidogenesis during testicular cycle of grey mullet

quite numerous in the interstitial septum of connective tissue, exhibiting large sizes and small nuclei and stained darkly with toluidine blue. On the other hand, Sertoli cells were clearly decreased in both size and number. Also, the lobule boundary cells were increased in size, but were conversely reduced in number. However, spermatids were still visible, though in small numbers (Figure 1d).

In the stage V (spent testis), the seminiferous lobules of the testes examined after spermiation had seemingly diminished in size, and their walls were acquiring a thickened appearance owing to the contraction of their contents of elastic fibers (Figure 1e). In this stage, the GSI was 1.25±0.35 (Table 1). The interstitial cells of the spent testes were irregular in shape, large in size, and had large nuclei ranging from oval to round shapes. It is also clear that Sertoli cells of the spent testis had turned to be active phagocytes, being migrated to the lumen of the seminiferous lobules playing a conspicuous role in phagocytizing the residual sperms, as well as other degenerative germ cells (Figure 1e).

The histochemical localization of the steroid dehydrogenases (3β-HSD) in the testis of M. cephalus

The histochemical localization of 3β-HSD was examined in mature (or ripe) and in spent stages. In the ripe testis, the histochemical localization of 3β-HSD was detected in the interstitial and sertoli cells (Figure 2a). In the spent testis, obtained after spawning, which was also incubated in the steroid dehydrogenases media, gave a positive reaction for 3β-HSD (Figure 2b). The reaction was mainly restricted to the phagocytic Sertoli cells, which were thence located inside the lumen of the seminiferous lobules.

Ultrastructure of the steroid-producing cells during testis maturation in M. cephalus

In the immature stages of spermatogenesis, the interstitial cells were obviously situated within the interstitium either singly or in clusters (Figure 3a). They contained an extensive amount of rough endoplasmic reticulum, as well as oval or round mitochondria with tubular cristae embedded in a relatively dense matrix. Besides, these cells possessed moderately-sized nuclei containing aggregates of heterochromatin; occasionally, spherical lipid droplets, and free ribosomes and collagen fibers were present in the cytoplasm. The lobule boundary cells of the immature testes characterized by having large elongated nuclei with prominent nucleoli and a small amount of cytoplasm containing collagen fibers (Figure 3a).

Accompanying spermatogenesis of M. cephalus, during the stimulating spermatogenic stage, the secretory activity of the interstitial cells had exhibited an obvious increase (Figure 3b). They were noticeably manifesting almost the same characteristic features of the steroid-producing cells, namely extensive smooth endoplasmic reticulum, with dilated vesicular cisternae, numerous mitochondria with tubular cristae, large sized lipid droplets, as well as a few collagen fibers. In addition, they embodied large elongated nuclei with dense heterochromatin material. Both steroidogenic organelles characteristic for the steroid-producing cells, as well as the protein-synthesizing organelles, were quite detectable in the Sertoli cells (Figure 3b). Sertoli cells also exhibited large lipid droplets, dilated cisternae of smooth endoplasmic reticulum, microtubules and free ribosomes (Figure 3c). Also, they had small nuclei with irregular outlines and containing heterogeneous chromatin material (Figure 3c).

The following period, identified as the rapid spermatogenic stage (Figure 3d,e). The steroid-producing cells (interstitial cells, lobule boundary cells, and Sertoli cells) have manifested a high level of secretory activity. Concerning the interstitial cells, they contained distinct rough and smooth endoplasmic reticulum, mitochondria with tubular or lamellar cristae, free ribosomes,
Figure 2: (a) Ripe testis of *M. cephalus* illustrating the positively reacting interstitial cells (ISC) and Sertoli cells (SC) with the substrate of 3β-HSD enzyme. (b) Spent testis of *M. cephalus*, showing the positive reaction of Sertoli cells (SC), located inside the seminiferous lobules, with the substrates of 3β-HSD enzyme. Beside remnants of germ cells, spermatozoa (SZ), and the thick interlobular septum (ILS) contained connective tissue (CT). 3β-HSD: 3β-hydroxysteroid dehydrogenase.
Figure 3: Ultrathin section of the testis of *M. cephalus* showing: (a) Immature testis, designating the interstitial cells (ISC), containing mitochondria (M), rough endoplasmic reticulum (rER), lipid droplets (LD), free ribosomes (R), lobule boundary cells (LBC), and collagen fibers (CF). (b) A stimulating spermatogenesis stage, illustrating interstitial cells with many elements of extensive smooth endoplasmic reticulum (sER), large lipid droplets (LD), beside the nucleus (N) containing dense heterochromatin. (c) A stimulating spermatogenesis stage, showing Sertoli cell (SC) with large lipid droplets (LD), large cisternae of smooth endoplasmic reticulum (sER), microtubules (MT), free ribosomes (R), the nuclei (N), collagen fibers (CF). (d) A rapid spermatogenesis stage, revealing interstitial cells (ISC) with large lipid droplets (LD), mitochondria (M), rough endoplasmic reticulum (rER), and smooth endoplasmic reticulum (sER). Besides, ribosomes (R), Golgi apparatus (GA), microtubules (MT), and nuclei (N) were illustrated. (e) A rapid spermatogenesis stage, showing lobule boundary cells (LBC) with lipid droplets (LD), mitochondria (M) and smooth endoplasmic reticulum (sER), and Sertoli cells (SC) containing mitochondria (M) with dense matrix and smooth endoplasmic reticulum (sER) with dilated cisternae. Beside spermatagonia (SG), primary spermatocytes (PSC), and nuclei (N) were present. (f) Spent testis, showing the phagocytic interstitial (ISC), Sertoli cells (SC), and degenerated germ cells (DGC).
and lipid droplets (Figure 3d). Besides, these cells contained large prominent nuclei with dense chromatin material. The Sertoli cells of the testis at this spermatogenic stage had lipid droplets, mitochondria, rough endoplasmic reticulum, distended Golgi apparatus, microtubules, ribosomes, and polysomes (Figure 3d). The lobule boundary cells of the rapid spermatogenic testis were also characterized by exhibiting lipid droplets with different sizes numerous mitochondria, endoplasmic reticulum (smooth and rough ones) ones, and free ribosomes (Figure 3d,e). Their nuclei were elongated with prominent nucleoli and a dense chromatin material (Figure 3e).

In the spent stage (after-spawning), the steroid-producing Sertoli cells and some interstitial cells have been obviously transformed into phagocytic cells to get rid of the remnants of the spermatozoa and some decayed germ cells (Figure 3f). The Sertoli cells of the spent testes have obviously represented nearly the same organelles characteristic for the phagocytic cells; comprising membrane-bound heterophagic lysosomes containing degenerated mitochondria and endoplasmic reticulum, in addition to parts of deteriorated germ cells (Figure 4a). The phagocytic Sertoli cell was with large pinocytotic vesicles containing portions of decayed germ cells (Figure 4a). They also contained many mitochondria with lamellar cristae beside some lysosomes. The nuclei of those Sertoli cells had irregular shapes with less dense chromatin material relative to the normal corresponding cells (Figure 4a,b). The phagocytic interstitial cells of the spent testes were characterized by the presence of extensive rough endoplasmic reticulum, distinct lysosomes, degenerated germ cells, and mitochondrial elements manifesting certain degenerating signs (Figure 4c). In addition, most of those cells have exhibited almost the same characteristic features of the steroid-producing cells, such as the picture of the endoplasmic reticulum (smooth and rough), mitochondria with different sizes and lamellar cristae, and lipid droplets (Figure 4d,e). They also had prominent nuclei with condensed peripherally located chromatin adjacent to the nuclear envelopes. The lobule boundary cells of the spent testes were characterized by the presence of endoplasmic reticulum (smooth and rough), free ribosomes, and mitochondria with different sizes and lamellar cristae (Figure 4d).

DISCUSSION

Our findings give a particular anatomical disposition of the steroidogenic cells during testicular recrudescence of *M. cephalus* by using different practical techniques including the histological structure of the putative (suspected) steroidogenic cells, the histochemical confirmation of the 3β-HSD that is fundamental for modulating the production of sex steroids, and the electron microscopy to give the accurate locating of the steroid synthesis cells in the gonads of this fish. In *M. cephalus*, inhabiting natural habitat, five developmental stages were distinguished during testicular cycle (immature, stimulating and rapid spermatogenesis, ripe, and spent stages). The presently encountered findings have indicated the presence of three types of putative steroid-producing cells (the interstitial cells, lobule boundary cells, and Sertoli cells) in the testis of the inspected fish “*M. cephalus*”. These observations have received confirmation from those presented previously for other teleost fishes[35,36]. It is worthy of mentioning that in some teleost species, Sertoli cells have been misnamed "lobule boundary cells". On the other hand, the lobule boundary cells have been misnamed "Sertoli cells" in *Oreochromis niloticus*. However, the testes of *Oncorhynchus kisutch* and *Oncorhynchus gorbuscha* were reported to contain only interstitial cells and lobule boundary cells[37].

The present findings have designated that Sertoli cells are present in the lobule wall, being separated from the interlobular space by a thin, but distinct, basal lamina. However, these cells were often noticed to occur in close proximity to the developing germ cells. These observations are in
Figure 4: Ultrathin section of the testis of *M. cephalus* showing: (a) Spent testis, representing the phagocytic Sertoli cell (SC) with lipid droplets (LD), membrane bound digestive vacuole (DV) containing degenerating mitochondria (M), endoplasmic reticulum (ER) and lysosomes, and a nucleus (N). (b) Spent testis, illustrating the phagocytic Sertoli cells (SC) with pinocytic vesicles containing a portion of degenerating germ cell (DGC), and mitochondria, beside lobule boundary cell (LBC) and connective tissue (CT). (c) Spent testis, showing the phagocytic interstitial cell (ISC), rough endoplasmic reticulum (rER), mitochondria (M), lipid droplets, (LD) and digestive vacuole (DV), beside nucleus (N) and collagen fibers (CF). (d) Spent testis illustrating lobule boundary cell (LBC) and interstitial cell (ISC) in a secretory phase, lipid droplets (LD), mitochondria (M), and both of smooth (sER) and rough endoplasmic reticulum (rER), beside nuclei (N) and connective tissue (CT). (e) Spent testis, designating interstitial cell (ISC), cisternae of both rough (rER) and smooth (SER) endoplasmic reticulum, lipid droplets (LD), mitochondria (M), and nucleus (N).
agreement with those presented in other teleost species38-40. Also, the presently obtained data have clarified that the seminiferous lobules of the testis of \textit{M. cephalus} are completely lined by distinct flat lobule boundary cellular layer with elongated nuclei. These observations confirmed those declared in some other teleosts37,41.

The interstitial cells of \textit{M. cephalus}, as in most fishes (\textit{Oreochromis niloticus}24, \textit{Oncorhynchus gorbiuscha} and \textit{Oncorhynchus kisutch}57, and \textit{Ictalurus nebulosus}18,40), were distributed either singly or in small groups in the interstices between the seminiferous lobules. However, in \textit{Poecilia latipinna} such cells were mentioned to be located around the sperm duct and at the periphery of the testis, but were not detected between the testis lobules42. Besides, the obtained results have revealed that the putative steroid-producing interstitial cells have manifested both quantitative and qualitative variations in concurrence with the successive developmental stages of the testis of \textit{M. cephalus}. These cells were easily detected in all stages of maturity, but they appeared to attain their maximum development during ripeness and just before spermiation. Their signs of maximal activity were reflected by the remarkable increase in their numbers and their sizes. Our observations confirmed those obtained by other researchers concerning some other teleosts29,39,40,43. However, in general, the present histological observations concerning the steroidogenic activity of the interstitial cells of \textit{M. cephalus} received good support from the findings presented by in \textit{Oreochromis niloticus}44 and \textit{Padogobius martensi}25, which showed a marked correlation between the intensity of interstitial cells and the circulating levels of testosterone.

The activity of 3β-HSD was designated in the gonads of all \textit{M. cephalus} examined by both light and electron microscopy. The presence of this enzyme is a characteristic feature of cells engaged with sex-steroid synthesizing activity. The 3β-HSD is known to occupy a key position in the metabolic pathways that lead to the formation of androgens and estrogens13,17,25. The occurrence of G6PD activity in the cells containing 3β-HSD enzyme provided sounding evidence of the steroidogenic potentiality of these cells, since G6PD is known to provide NADPH that is needed for hydroxylation during steroidogenesis45,46. The present mode of 3β-HSD occurrence is consistent with the localization of this enzyme in other teleosts such as \textit{Torpedo marmorata}14, \textit{Anguilla anguilla}15, \textit{Cymatogaster aggregata}21, and \textit{Salmo gairdneri}22. Worthwhile is that 3β-HSD activity was detected only in the interstitial cells of the testis of a number of teleosts (e.g. \textit{Ictalurus nebulosus}18, \textit{Serrasalmus spilopleura}20, \textit{Padogobius martensi}41,25, \textit{Synbranchus marmoratus}27). In addition, to interstitial cells, lobule boundary cells were suspected to serve as possible sites of steroidogenesis in some teleosts such as \textit{Tilapia mossambica}23 and \textit{Tilapia nilotica}24.

As previously notified by certain researchers25,47,48, the steroid-producing cells are believed to be characterized by certain ultrastructural features such as mitochondria with tubular cristae, smooth endoplasmic reticulum, and lipid droplets. The steroid-synthesizing cells are recognizable at the electron microscopic level by the presence of smooth endoplasmic reticulum as well as mitochondria, with tubular cristae, as already indicated previously49. The present ultrastructural examination of \textit{M. cephalus} testis has revealed that the Leydig cells stand as essential sites of steroid production in the testis. These findings are also in good agreement with previous reports offered, concerning the corresponding cells in the testes of other teleosts including \textit{Pampus argenteus}8, \textit{Kareius bicoloratus}10, \textit{Serrasalmus spilopleura}20, \textit{Boleophthalmus pectinrostris}11, \textit{Larimichthys polyactis}28, and \textit{Kareius bicoloratus}29.

El-messady, F. A. et al.
In addition to Leydig cells, Sertoli cells or lobule boundary cells were also considered as possible sites of steroidogenesis in teleosts[50]. This assumption was strengthened by the present ultrastructural findings of \textit{M. cephalus} testes, at different maturity stages, indicating a steroidogenic potency of these cells particularly at the end of the maturation phase of germ cells. Similarly, Sertoli cells or lobule boundary cells of other species have been reported to contain some ultrastructural features commonly accepted as characteristics of steroid-producing cells, comprising mitochondria with tubular cristae and a granular endoplasmic reticulum, although much less developed than those of the interstitial cells, beside many lipid droplets[22,26,37,38].

Worthwhile is that the presently gathered ultrastructural data have also displayed that the steroid synthesizing cells in the testes of \textit{M. cephalus}, especially in the period of rapid spermatogenesis, possess certain features suggestive of protein synthesis ability including rough endoplasmic reticulum, as well as a distinct Golgi apparatus and free ribosomes. In addition, Sertoli cells have exhibited some ultrastructural features indicating their involvement in transporting metabolites (e.g. microtubules). This postulation supported the previous reports for \textit{Poecilia latipinna}, \textit{Carassius aurata}, \textit{Oncorhynchus kisutch}, \textit{O. gorbuscha}, and \textit{Pampus argenteus}[8,51,52].

After spawning of \textit{M. cephalus}, Sertoli cells and some of the interstitial cells of spent testes had manifested certain features presented in the form of organelles, which are common characteristics for the phagocytic cells. These comprised a membrane-bound heterophagic lysosomes, pinocytotic vesicles containing portions of degenerating germ cells, deteriorated mitochondria, and injured endoplasmic reticulum. These findings reinforce the phagocytic role played by both Sertoli cells and some of the interstitial cells in the resorption of non-ejaculated sperm cells. A similar function assigned to Sertoli cells was reported in \textit{Pampus argenteus}[8], \textit{Kareius bicoloratus}[10], \textit{Boleophthalmus pectinirostris}[11], \textit{Padogobius martensi}[13], \textit{Larimichthys polyactis}[28], \textit{Kareius bicoloratus}[29], and \textit{Synbranchus marmoratus}[53].

In conclusion, our investigation showed that during mullet spermatogenesis five developmental stages were distinguished and different cell types, i.e. Sertoli, Leydig, and lobule boundary cells, are involved in testosterone production, whose prominent role in spermatogenesis seems to be fundamental in meiotic phase.

COMPLIANCE WITH ETHICAL STANDARDS

The animal handling and the study design were approved (code: NIOF AQS F 22 R 016) by the National Institute of Oceanography and Fisheries Committee for Institutional Care of Aquatic Organisms and Experimental Animals (NIOF-IACUC).

FUNDING SOURCE DISCLOSURE

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Steroidogenesis during testicular cycle of grey mullet

Hoar, W. S. and Nagahama, Y. (1978). The cellular sources of sex steroids in

التركيب النسيجي، وكيمياء الأنسجة، والتركيب الدقيق لتكون الستيرويد أثناء دورة الخصية

لسمك البوري "Mugil cephalus"

فريyal أحمد المسدي، نهى عبد الحميد خليل، مصطفى عبد الوهاب موسى

1 فريق علم الحيوان، كلية العلوم، جامعة المنوفية، المنوفية، مصر
2 معال تناسل وتقييد الأسماء، المعهد القومي لعلوم البحر والمصايد القيثارية، مصر
3 معال تناسل وتقييد الأسماء، المعهد القومي لعلوم البحر والمصايد، الإسكندرية، مصر

ازداد الاهتمام مؤخرًا بكثار وإنتاج أسماك البوري "Mugil cephalus". ونظرًا للدور الرئيسي الذي تلعبه الهرمونات الستيروئيدية في نضوج الأسماك وإنتاج البويضات المخصبة، فقد تم التخطيط للعمل الحالي لتحديد وفحص الخلايا الستيروئيدية في فم أسماك البوري، ومن ثم تحديد مستويات نشاطها خلال دورة نضجه، بهدف الاستفادة من النتائج في تكاثر واستزراع الأسماك. تم الحصول على الذكور الناضجة لأسماك البوري من البيئة الطبيعية (بحيرة البردويل). وتم إجراء الفحوصات الكيميائية الخلوية ودراسة التركيب الدهني للتراكيب الستيروئيدية التي تحتوي على إنزيم 3-بيتا هيدروكسي إستريويد دييدروجيناز. وقد أمكن تمييز خمس مراحل من التغذية أثناء دورة الخصبة في ذكور أسماك البوري: المرحلة غير الناضجة، مرحلة تحفيز تكوين الدهون المنوية، المرحلة السريعة لتكون الدهون المنوية، مرحلة التضحي، ومرحلة مابع التفريخ. وأظهر الفحص بالمجهر الإلكتروني أن الخلايا البنية (خلية اليد)، والخلايا المحيدة بالفصيات الخصوية، وخلايا سيرتونلي التي تحمى فم الأسماك، معروفة بطرات دهنية بارزة وعبيات سيتيوبلازمية نموذجية للخلايا المصنعة للبروتين (مثل الشبكة الإندوبلازمية الخشنة والرايينوسومات الففيفة وجهاز جولي المتمبيذ). بالإضافة لذلك، تمكنت خلايا سيرتونلي، على وجه الخصوص، أن تصنع دقة معينة معرفة بأنها تعمل في نقل النواتج الأرضية. علامة على ذلك، فإن فحص الخصية في مرحلة ما، قبل التفريخ بالمجهر الإلكتروني، أوضح أن خلايا سيرتونلي وكذلك بعض الخلايا البنية قد تحولت إلى خلايا يلعبون دور الخلط من خلايا الدهون المنوية المتبقية بعد التفريخ. الخلاصة، يمكن أن تكون النتائج الحالية ذات قيمة كبيرة في المشاكل المتعلقة بنىج الأسماك عند الاستزراع.